Disk - Characteristics

Hierachy Storage

About

Storage technologies at all levels of the storage hierarchy can be differentiated by evaluating certain core characteristics as well as measuring characteristics specific to a particular implementation. These core characteristics are volatility, mutability, accessibility, and addressability. For any particular implementation of any storage technology, the characteristics worth measuring are capacity and performance.

Performance

Throughput

The rate at which information can be read from or written to the storage. In computer data storage, throughput is usually expressed in terms of megabytes per second or MB/s, though bit rate may also be used. As with latency, read rate and write rate may need to be differentiated. Also accessing media sequentially, as opposed to randomly, typically yields maximum throughput.

Latency

The time it takes to access a particular location in storage. The relevant unit of measurement is typically nanosecond for primary storage, millisecond for secondary storage, and second for tertiary storage. It may make sense to separate read latency and write latency, and in case of sequential access storage, minimum, maximum and average latency.

Capacity

Raw capacity

The total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4 megabytes).

Memory storage density

The compactness of stored information. It is the storage capacity of a medium divided with a unit of length, area or volume (e.g. 1.2 megabytes per square inch).

Volatility

See Data - Volatility (Volatile vs Permanent)

Differentiation

Dynamic random access memory

A form of volatile memory which also requires the stored information to be periodically re-read and re-written, or refreshed, otherwise it would vanish.

Static memory

A form of volatile memory similar to DRAM with the exception that it never needs to be refreshed as long as power is applied. (It loses its content if power is removed).

Mutability

Read/write storage or mutable storage

Allows information to be overwritten at any time. A computer without some amount of read/write storage for primary storage purposes would be useless for many tasks. Modern computers typically use read/write storage also for secondary storage.

Read only storage

Retains the information stored at the time of manufacture, and write once storage (Write Once Read Many) allows the information to be written only once at some point after manufacture. These are called immutable storage. Immutable storage is used for tertiary and off-line storage. Examples include CD-ROM and CD-R.

Slow write, fast read storage

Read/write storage which allows information to be overwritten multiple times, but with the write operation being much slower than the read operation. Examples include CD-RW and flash memory.

Accessibility

Random access

IO - Random and Sequential Access.

Any location in storage can be accessed at any moment in approximately the same amount of time. Such characteristic is well suited for primary and secondary storage.

Sequential access

The accessing of pieces of information will be in a serial order, one after the other; therefore the time to access a particular piece of information depends upon which piece of information was last accessed. Such characteristic is typical of off-line storage.

Addressability

Location-addressable

Each individually accessible unit of information in storage is selected with its numerical memory address. In modern computers, location-addressable storage usually limits to primary storage, accessed internally by computer programs, since location-addressability is very efficient, but burdensome for humans.

File addressable

Information is divided into files of variable length, and a particular file is selected with human-readable directory and file names. The underlying device is still location-addressable, but the operating system of a computer provides the file system abstraction to make the operation more understandable. In modern computers, secondary, tertiary and off-line storage use file systems.

Content-addressable

Each individually accessible unit of information is selected based on the basis of (part of) the contents stored there. Content-addressable storage can be implemented using software (computer program) or hardware (computer device), with hardware being faster but more expensive option. Hardware content addressable memory is often used in a computer's CPU cache.

Documentation / Reference





Discover More
Card Puncher Data Processing
Computer - Storage Device (Media)

A storage device is a that stores byte: machine instructions byte data byte It is an array of circuits that saves bit state (0 or 1). A storage device can be anything that can store and retrieve...
Card Puncher Data Processing
Data Storage and Manipulation (Computer Architecture)

Computers are all manipulating Data. The efficiency of a computer is a function of: how fast it can manipulate the data (CPU speed) and how fast it can retrieve and store that data (CPU cache,...
Bill Gates Cd Rom
Disk - Capacity (Raw Capacity|Size)

Raw capacity is a characteristic of a computer storage and is the total amount of stored information that a storage device or medium can hold. It is expressed as a quantity of bits or bytes (e.g. 10.4...
Card Puncher Data Processing
IO - Throughput / Data Transfer Rate (DTR) / Bit Rate

in storage device. Throughput or data transfer rate (DTR) is : the speed at which data can be transmitted between devices. ie the rate at which information can beread from or written to the storage...
Hierachy Storage
Storage Device - Latency (Remote Response Time)

Latency is the second performance characteristic of a storage device. It's defined as the time needed to access a particular location in storage. The relevant unit of measurement is typically: ...



Share this page:
Follow us:
Task Runner