
Update Parallelism

Parallelism Models

CPU

Memory

Disk

…

We’ll be talking about “shared nothing” today.
Other models are easier to work with.

Option 4: “Shared Nothing” in which all communication is explicit.

Data Parallelism

A A A CBA

Replication Partitioning

(needed for safety)

Updates

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages are

What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)X

Updates (in Parallel)

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages delivered out-of-order

What can go wrong?

Node 1 Node 2

Updates (in Parallel)

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages delivered out-of-order

What can go wrong?

Node 1 Node 2

Updates (in Parallel)

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages delivered out-of-order

What can go wrong?

Node 1 Node 2

XXYY YYXX

Updates (in Parallel)

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages delivered out-of-order

What can go wrong?

Classical Xacts

“Partitions”

Consensus

Data Parallelism

A A A CBA

Replication Partitioning

(needed for safety)

Simple Consensus

A A BB

Node 1 Node 2

Primary Secondary

YYXX YYXX

“Safe” … but Node 1 is a bottleneck.

Simpl-ish Consensus

A A

Node 1 Node 2

Primary for A Primary for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

YY

XX

YY

XX

Partitions

Node 1 Node 2

Node 1
From Node 1’s perspective, these are the same!

Channel Failure

Node Failure

Node 2

Failure Recovery

 Node Failure

 The node restarts and resumes serving
requests.

 Channel Failure

 Node 1 and Node 2 regain connectivity.

Partitions

Node 1 Node 2

A=1
B=5

A=1
B=5

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

Node 2 is down.
I control A & B now!

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

Node 2 is down.
I control A & B now!

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

Node 2 is down.
I control A & B now!

A = 2
B = 6

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6
A=2
B=6

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5

A=1
B=5

Node 2 is down.
I control A & B now!

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

Node 2 is down.
I control A & B now!

A = 2
B = 6

Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

INCONSISTENCY!

Partitions

Node 1 Node 2

Option 2: Wait

Partitions

Node 1 Node 2

Option 2: Wait

A = 2
B = 6

Partitions

Node 1 Node 2

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

Partitions

Node 1 Node 2

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

Partitions

Node 1 Node 2

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

All
set

Partitions

Node 1 Node 2

Option 2: Wait

Partitions

Node 1

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

Partitions

Node 1

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

Still
waiting…

Partitions

Option 1: Assume Node Failure

All data is available… but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent… but unavailable

C A P
o
n
s
i
s
t
e
n
c
y

v
a
i
l
a
b
i
l
i
t
y

or or

a
r
t
i
t
i
o
n

Traditionally: Pick any 2

T
o
l
e
r
a
n
c
e

C A P

or during

o
n
s
i
s
t
e
n
c
y

v
a
i
l
a
b
i
l
i
t
y

a
r
t
i
t
i
o
n
s

I prefer this phrasing

Simpl-ish Consensus

A A

Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

YY

XX

YY

XX

Simpl-ish Consensus

A A

Node 1 Node 2

Master for A Master for B

What if we need to coordinate between A & B?

BB

YY

XX

YY

XX
Withdraw $1000

from A

Deposit $1000
into B

Withdraw $1000
from A

Deposit $1000
into B

Naive Commit

Node 1 Node 2Coordinator

ACK ACK

Safe to Commit?

Safe to Commit?

W(A,B)

That packet sure does look tasty…

Naive Commit

Node 1 Node 2Coordinator

W(A,B)

ACK

Is it safe to abort?

Naive Commit

Node 1 Node 2Coordinator

ACK ACK

What now?

W(A,B)

Naive Commit

Node 1 Node 2Coordinator

W(A)

ACK

How do we know Node 2 even still exists?

2-Phase Commit
 One site selected as a coordinator.

 Initiates the 2-phase commit process.

 Remaining sites are subordinates.

 Only one coordinator per xact.

 Different xacts may have different
coordinators.

Assumptions
 Undo/Redo Logging at Participants

 Participants can Abort an Xact at any time

 Participants can recover from a crash

 Redo Logging at Coordinator

 Coordinator can recover from a crash

 All logs replicated (to recover from hard
failures)

Phase 1 - Prepare
Coordinator Node 1 Node 2

Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”

Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”

Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”

We are go
for Commit

“Commit”
“Commit”

Phase 2 - Commit
Coordinator Node 1 Node 2

“Prepare”

“Commit”

We are go
for Commit

“Commit”
“Commit”

Phase 2 - Commit
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go
for Commit

“Commit”
“Commit”

Aborting
Coordinator Node 1 Node 2

“Prepare”

Commit
Canceled

“Abort”

“ACK”
“ACK”

ACKs received
Abort successful

“Commit”
“Abort”

If any participant aborts in Phase 1, everyone aborts.

Guarantees
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go
for Commit

“Commit”
“Commit”

A Node “Commit” means the node is able to commit.
A Coordinator “Commit” means the transaction must commit.

Guarantees
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go
for Commit

“Commit”
“Commit”

Once a node commits, the xact is still not committed yet.
However the node must avoid breaking the commit.

Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”

Prepare unreceived and unacknowledged: Coordinator (1) Retries, or (2) Aborts

Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”

Node 2 crashes before responding: Restart and continue as a dropped packet

CRASH!CRASH!

Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”

Node “Commit” unreceived: (1) Re-sent “Prepare” can be ignored.
(2) Node still able to abort.

Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”

Node 2 crashes after responding: Restart from log

CRASH!CRASH!

Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go
for Commit

“Commit”
“Commit”

Coordinator “Commit” unreceived: Commit must happen, coordinator resends

Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go
for Commit

“Commit”
“Commit”

Node 2 crash: Restart. Already logged “Commit” message, so all is well.

CRASH!CRASH!

Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

We are go
for Commit

“Commit”
“Commit”

Node “Ack” unreceived: Ok. Resent “Commit” ignored by node

Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go
for Commit

“Commit”
“Commit”

Node crash after “Ack”: Ok. Log already recorded commit

CRASH!CRASH!

“ACK”

Replication

 Mode 1: Periodic Backups

 Copy the replicated data nightly/hourly.

 Mode 2: Log Shipping

 Only send changes (replica serves as the
log).

Replication

 Ensuring durability

 Ensuring write-consistency under 2PC

 Ensuring read-consistency without 2PC

Ensuring Durability

When is a replica write durable?

Ensuring Durability

Never.

What you should be asking is how
much durability do you need?

Ensuring Durability

For N Failures
N+1 Replicas

(Assuming Failure = Crash)

Ensuring Write
Consistency

Coordinator Node 1
“Prepare”

“Commit”

Node 1 asserts that the commit is durable!
What if Node 1 fails?

Ensuring Write
Consistency

Coordinator Node 1 Replica
“Prepare”

“Commit”

“Prepare”
“Commit”

Waiting for Node 1 to replicate is slooooow!
Let the coordinator take over!

Ensuring Write
Consistency

Coordinator Node 1 Replica
“Prepare”

Like 2PC…
 … but better. We may not need to wait for the replica

“Commit”
“Commit”

Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

A: PrepareA: Prepare

Coordinator
Alice

Coordinator
Bob

B: PrepareB: PrepareA: PrepareA: Prepare B: PrepareB: PrepareA: PrepareA: Prepare B: PrepareB: Prepare

Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

A: PrepareA: Prepare

B: PrepareB: Prepare

A: PrepareA: Prepare

B: PrepareB: Prepare A: PrepareA: Prepare

B: PrepareB: Prepare

Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

B: PrepareB: Prepare B: PrepareB: Prepare A: PrepareA: PrepareCommit! Commit!

Ensuring Write-
Consistency

Majority Vote

N Replicas
(N/2)+1 Votes Needed

Ensuring Read
Consistency

Forget transactions, let’s go back to reads & writes

Can we do better than 2PC if we don’t need xacts?

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob

Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)

Replica 2

Replica 1

Replica 3

W(A = 42)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)

What can we
do to guarantee

that Bob will
see the 42?

Ensuring Read
Consistency

Approach: Alice and Bob each wait for multiple responses.

Alice waits for ‘ack’s
Bob waits for read responses.

How many responses are required for each?

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”

Ensuring Read-
Consistency

Like Majority Vote

N Replicas
R Replica Reads Needed
W Writer Acks Needed

R + W > N

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82

