
Update Parallelism



Parallelism Models

CPU

Memory

Disk

…

We’ll be talking about “shared nothing” today.  
Other models are easier to work with.

Option 4: “Shared Nothing” in which all communication is explicit.



Data Parallelism

A A A CBA

Replication Partitioning

(needed for safety)



Updates

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages are 

What can go wrong?

Node 1

T1: W(X)
T2: W(X)
T2: W(Y)
T1: W(Y)X
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What can go wrong?
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XXYY YYXX



Updates (in Parallel)

 Non-Serializable Schedules

 One Compute Node Fails

 A Communication Channel Fails

 Messages delivered out-of-order

What can go wrong?

Classical Xacts

“Partitions”

Consensus



Data Parallelism

A A A CBA

Replication Partitioning

(needed for safety)



Simple Consensus

A A BB

Node 1 Node 2

Primary Secondary

YYXX YYXX

“Safe” … but Node 1 is a bottleneck.



Simpl-ish Consensus

A A

Node 1 Node 2

Primary for A Primary for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

YY

XX

YY

XX



Partitions

Node 1 Node 2

Node 1
From Node 1’s perspective, these are the same!

Channel Failure

Node Failure

Node 2



Failure Recovery

 Node Failure

 The node restarts and resumes serving 
requests.

 Channel Failure

 Node 1 and Node 2 regain connectivity.



Partitions

Node 1 Node 2

A=1
B=5

A=1
B=5



Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=1
B=5



Node 2 is down.  
I control A & B now!

Partitions
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Option 1: Node 1 takes over

Node 2

A=1
B=5

Node 2 is down.  
I control A & B now!
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Option 1: Node 1 takes over

Node 2

A=2
B=6

Node 2 is down.  
I control A & B now!
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B = 6



Partitions
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Option 1: Node 1 takes over

Node 2

A=2
B=6
A=2
B=6
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Partitions

Node 1

Option 1: Node 1 takes over

Node 2

A=2
B=6

A=1
B=5

INCONSISTENCY!



Partitions

Node 1 Node 2

Option 2: Wait



Partitions

Node 1 Node 2
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B = 6
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Partitions

Node 1 Node 2

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

All 
set
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Partitions
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Option 2: Wait

A = 2
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Let me wait!



Partitions

Node 1

Option 2: Wait

A = 2
B = 6

I can’t talk to Node 2
Let me wait!

Still 
waiting…



Partitions

Option 1: Assume Node Failure

All data is available… but at risk of inconsistency.

Option 2: Assume Connection Failure

All data is consistent… but unavailable
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I prefer this phrasing



Simpl-ish Consensus

A A

Node 1 Node 2

Master for A Master for B

Node 2 agrees to Node 1’s order for A.
Node 1 agrees to Node 2’s order for B.

BB

YY

XX

YY

XX



Simpl-ish Consensus

A A

Node 1 Node 2

Master for A Master for B

What if we need to coordinate between A & B?

BB

YY

XX

YY

XX
Withdraw $1000 

from A

Deposit $1000
into B

Withdraw $1000 
from A

Deposit $1000
into B



Naive Commit

Node 1 Node 2Coordinator

ACK ACK

Safe to Commit?

Safe to Commit?

W(A,B)



That packet sure does look tasty…



Naive Commit

Node 1 Node 2Coordinator

W(A,B)

ACK

Is it safe to abort?



Naive Commit

Node 1 Node 2Coordinator

ACK ACK

What now? 

W(A,B)



Naive Commit

Node 1 Node 2Coordinator

W(A)

ACK

How do we know Node 2 even still exists?



2-Phase Commit
 One site selected as a coordinator.

 Initiates the 2-phase commit process.

 Remaining sites are subordinates.

 Only one coordinator per xact.

 Different xacts may have different 
coordinators.



Assumptions
 Undo/Redo Logging at Participants

 Participants can Abort an Xact at any time

 Participants can recover from a crash

 Redo Logging at Coordinator

 Coordinator can recover from a crash

 All logs replicated (to recover from hard 
failures)



Phase 1 - Prepare
Coordinator Node 1 Node 2



Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”



Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”



Phase 1 - Prepare
Coordinator Node 1 Node 2

“Prepare”

We are go 
for Commit

“Commit”
“Commit”



Phase 2 - Commit
Coordinator Node 1 Node 2

“Prepare”

“Commit”

We are go 
for Commit

“Commit”
“Commit”



Phase 2 - Commit
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go 
for Commit

“Commit”
“Commit”



Aborting
Coordinator Node 1 Node 2

“Prepare”

Commit
Canceled

“Abort”

“ACK”
“ACK”

ACKs received
Abort successful

“Commit”
“Abort”

If any participant aborts in Phase 1, everyone aborts.



Guarantees
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go 
for Commit

“Commit”
“Commit”

A Node “Commit” means the node is able to commit.
A Coordinator “Commit” means the transaction must commit.



Guarantees
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

ACKs received
Commit successful

We are go 
for Commit

“Commit”
“Commit”

Once a node commits, the xact is still not committed yet. 
However the node must avoid breaking the commit.



Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”

Prepare unreceived and unacknowledged: Coordinator (1) Retries, or (2) Aborts



Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”

Node 2 crashes before responding: Restart and continue as a dropped packet

CRASH!CRASH!



Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”

Node “Commit” unreceived: (1) Re-sent “Prepare” can be ignored.
(2) Node still able to abort.



Failure Modes
Coordinator Node 1 Node 2

“Prepare”

“Commit”
“Commit”

Node 2 crashes after responding: Restart from log

CRASH!CRASH!



Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go 
for Commit

“Commit”
“Commit”

Coordinator “Commit” unreceived: Commit must happen, coordinator resends



Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go 
for Commit

“Commit”
“Commit”

Node 2 crash: Restart.  Already logged “Commit” message, so all is well.

CRASH!CRASH!



Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”
“ACK”

We are go 
for Commit

“Commit”
“Commit”

Node “Ack” unreceived: Ok.  Resent “Commit” ignored by node



Failure Cases
Coordinator Node 1 Node 2

“Prepare”

“Commit”

“ACK”

We are go 
for Commit

“Commit”
“Commit”

Node crash after “Ack”: Ok.  Log already recorded commit

CRASH!CRASH!

“ACK”



Replication

 Mode 1: Periodic Backups

 Copy the replicated data nightly/hourly.

 Mode 2: Log Shipping

 Only send changes (replica serves as the 
log).



Replication

 Ensuring durability

 Ensuring write-consistency under 2PC

 Ensuring read-consistency without 2PC



Ensuring Durability

When is a replica write durable?



Ensuring Durability

Never.

What you should be asking is how 
much durability do you need?



Ensuring Durability

For N Failures
N+1 Replicas

(Assuming Failure = Crash)



Ensuring Write 
Consistency

Coordinator Node 1
“Prepare”

“Commit”

Node 1 asserts that the commit is durable!
What if Node 1 fails?



Ensuring Write 
Consistency

Coordinator Node 1 Replica
“Prepare”

“Commit”

“Prepare”
“Commit”

Waiting for Node 1 to replicate is slooooow!
Let the coordinator take over!



Ensuring Write 
Consistency

Coordinator Node 1 Replica
“Prepare”

Like 2PC… 
  … but better.  We may not need to wait for the replica

“Commit”
“Commit”



Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

A: PrepareA: Prepare

Coordinator
Alice

Coordinator
Bob

B: PrepareB: PrepareA: PrepareA: Prepare B: PrepareB: PrepareA: PrepareA: Prepare B: PrepareB: Prepare



Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

A: PrepareA: Prepare

B: PrepareB: Prepare

A: PrepareA: Prepare

B: PrepareB: Prepare A: PrepareA: Prepare

B: PrepareB: Prepare



Ensuring Write-
Consistency

Replica 2Replica 1 Replica 3

Coordinator
Alice

Coordinator
Bob

B: PrepareB: Prepare B: PrepareB: Prepare A: PrepareA: PrepareCommit! Commit!



Ensuring Write-
Consistency

Majority Vote

N Replicas
(N/2)+1 Votes Needed



Ensuring Read 
Consistency

Forget transactions, let’s go back to reads & writes

Can we do better than 2PC if we don’t need xacts?



Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’



Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob



Replica 2

Replica 1

Replica 3

W(A = 3)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)



Replica 2

Replica 1

Replica 3

W(A = 42)

(1) Alice writes ‘A’

(2) Alice tells Bob

(3) Bob reads ‘A’

R(A)

What can we
do to guarantee

that Bob will 
see the 42?



Ensuring Read 
Consistency

Approach: Alice and Bob each wait for multiple responses.

Alice waits for ‘ack’s
Bob waits for read responses.

How many responses are required for each?



Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK



Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”



Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”



Replica 2

Replica 1

Replica 3

W(A = 42) R(A)

ACK

“666”



Ensuring Read-
Consistency

Like Majority Vote

N Replicas
R Replica Reads Needed
W Writer Acks Needed

R + W > N
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