Parallel DBs

Why Scale?

Scan of 1 PB at 300MB/s (SATA r2 Limit)

Why Scale Up? Scan of 1 PB at 300MB/s (SATA r2 Limit)

Why Scale Up? Scan of 1 PB at 300MB/s (SATA r2 Limit)

Data Parallelism

Replication

Partitioning

Operator Parallelism

 Pipeline Parallelism: A task breaks down into stages; each machine processes one stage.

 Partition Parallelism: Many machines doing the same thing to different pieces of data.

Types of Parallelism

 Both types of parallelism are natural in a database management system.

SELECT SUM(...) FROM Table WHERE ...

DBMSes: The First || Success Story

- Every major DBMS vendor has a || version.
- Reasons for success:
 - Bulk Processing (Partition ||-ism).
 - Natural Pipelining in RA plan.
 - Users don't need to think in ∏.

Types of Speedup

- Speed-up ||-ism
 - More resources = proportionally less time spent.
- Scale-up ||-ism
 - More resources = proportionally more data processed.

CPU

Memory

Disk

How do the nodes communicate?

Option 1: "Shared Memory" available to all CPUs

e.g., a Multi-Core/Multi-CPU System

Option 2: <u>Non-Uniform Memory Access</u>.

Used by most AMD servers

Option 3: "Shared Disk" available to all CPUs

Each node interacts with a "disk" on the network.

Option 4: "Shared Nothing" in which all communication is explicit.

Examples include MPP, Map/Reduce. Often used as basis for other abstractions.

Parallelizing

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelizing

OLAP - Parallel Queries

OLTP - Parallel Updates

Parallelism & Distribution

- <u>Distribute</u> the Data
 - Redundancy
 - Faster access
- <u>Parallelize</u> the Computation
 - Scale up (compute faster)
 - Scale out (bigger data)

Operator Parallelism

- General Concept: Break task into individual units of computation.
- Challenge: How much data does each unit of computation need?
- Challenge: How much data *transfer* is needed to allow the unit of computation?

Same challenges arise in Multicore, CUDA programming.

No Parallelism

N-Way Parallelism

???

Chaining Parallel Operators

One-to-One Data Flow ("Map")

One-to-One Data Flow

Extreme 1 All-to-All All nodes send all records to all downstream nodes

Extreme 2 Partition Each record goes to exactly one downstream node

Many-to-Many Data Flow

Many-to-One Data Flow ("Reduce/Fold")

Parallel Operators

Select Project Union (bag)

What is a logical "unit of computation"? (1 tuple)

Is there a data dependency between units? (no)

Parallel Operators

Parallel Aggregates

Algebraic: Bounded-size intermediate state (Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state (Median, Mode/Top-K Count, Count-Distinct; Not Distribution-Friendly)

Fan-In Aggregation

Fan-In Aggregation

If Each Node Performs K Units of Work... (K Messages) How Many Rounds of Computation Are Needed?

Log_K(N)

Fan-In Aggregation Components

Combine(Intermediate₁, ..., Intermediate_N) = Intermediate

<SUM₁, COUNT₁ $> \otimes ... \otimes <$ SUM_N, COUNT_N>

= < SUM₁+...+SUM_N, COUNT₁+...+COUNT_N>

Compute(Intermediate) = Aggregate Compute(<SUM, COUNT>) = SUM / COUNT

Parallel Joins

FOR i IN 1 to N

One Unit of Computation

Parallel Joins

How much data needs to be transferred?

How many "units of computation" do we create?

Parallel Joins

What if we partitioned "intelligently"?

Let's start simple... what can we do with no partitions?

R and S may be any RA expression...

No Parallelism!

Lots of Data Transfer!

Better! We can guess whether R or S is smaller.

What can we do if R is partitioned?

There are lots of partitioning strategies, but this one is interesting....

... it can be used as a model for partitioning S...

... it can be used as a model for partitioning S...

...and neatly captures the data transfer issue.

So let's use it: S_i joins with $R_1, R_2, ..., R_N$ locally.

Goal: Minimize amount of data sent from R_k to S_i

Solution 1: Use a partitioning strategy

Solution 2: "Hints" to figure out what R_k should send

Sending Hints R_k M_B S_i The naive approach...

Sending Hints R_k M_B S_i The naive approach...

Sending Hints R_k M_B S_i The naive approach...

Sending Hints R_k ⋈_B S_i The smarter approach...

Node 2<2,X>
<3,Y>
<6,Y>

Sending Hints R_k M_B S_i The smarter approach...

Sending Hints R_k M_B S_i The smarter approach...

Sending Hints

Now Node 1 sends as little data as possible...

... but Node 2 needs to send a lot of data.

Can we do better?

Sending Hints R_k M_B S_i Strategy 1: Parity Bits

Sending Hints R_k M_B S_i Strategy 1: Parity Bits

Sending Hints R_k M_B S_i Strategy 1: Parity Bit

Sending Hints R_k M_B S_i Strategy 2: Parity Bits

Sending Hints

Can we summarize the parity bits?

Alice Bob Carol Dave

A Bloom Filter is a bit vector M - # of bits in the bit vector K - # of hash functions

For ONE key (or record):
 For i between 0 and K:
 bitvector[hash; (key) % M] = 1

Each bit vector has ~K bits set

- Key 1
 00101010
 Filters are combined by Bitwise-OR

 Key 2
 01010110
 e.g. (Key 1 | Key 2)

 = 01111110
- Key 3 10000110 How do we test for inclusion? (Key & Filter) == Key?

Key 4 01001100

(Key 1 & S) = 00101010 \checkmark (Key 3 & S) = 00000110 \times (Key 4 & S) = 01001100 \checkmark False Positive

Sending Hints R_k M_B S_i Strategy 3: Bloom Filters

Sending Hints R_k M_B S_i Strategy 3: Bloom Filters

Send me rows
with a 'B' in
the bloom
filter
summarizing
the set
{2,3,6}

Sending Hints R_k M_B S_i Strategy 3: Bloom Filters

Probability that 1 bit is set by 1 hash fn

1/m

Probability that 1 bit is not set by 1 hash fn

1 - 1/m

Probability that 1 bit is not set by k hash fns

 $(1 - 1/m)^{k}$

Probability that 1 bit is not set by k hash fns for n records

$$(1 - 1/m)^{kn}$$

So for an arbitrary record, what is the probability that all of its bits will be set?

Probability that 1 bit is set by k hash fns for n records

Probability that all k bits are set by k hash fns for n records

$$\approx (1 - (1 - 1/m)^{kn})^k$$

≈ (1 - e^{-kn/m}) k

Minimal P[collision] is at $k \approx c \cdot m/n$

k ≈ c • m/n

m k ≈ cn

m is linearly related to n (for a fixed k)

Bloom Join

- Node 2 Computes Bloom Filter for Local Records
- Node 2 Sends Bloom Filter to Node 1
- Node 1 Matches Local Records Against Bloom Filter
- Node 1 Sends Matched Records to Node 2
 - Superset of "useful" records
- Node 2 Performs Join Locally