
Parallel DBs



Why Scale?
Scan of 1 PB at 300MB/s (SATA r2 Limit)



Why Scale Up?
Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour



Why Scale Up?
Scan of 1 PB at 300MB/s (SATA r2 Limit)

~1 Hour

…
(x1000)

~3.5 Seconds



Data Parallelism

A A A CBA

Replication Partitioning



Operator Parallelism
• Pipeline Parallelism: A task breaks down into 

stages; each machine processes one stage.

• Partition Parallelism: Many machines doing 
the same thing to different pieces of data.

Sequential
Operation

Sequential
Operation

Sequential
Operation

Sequential
OperationSequential

OperationSequential
Operation



Types of Parallelism

• Both types of parallelism are natural in 
a database management system.

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

Sequential
OperationSequential

OperationSequential
Operation

SELECT SUM(…) FROM Table WHERE …

LOAD SELECT AGG Combine

Sequential
Operation



DBMSes: The First || 
Success Story

• Every major DBMS vendor has a || version.

• Reasons for success:

• Bulk Processing (Partition ||-ism).

• Natural Pipelining in RA plan.

• Users don’t need to think in ||.



Types of Speedup

• Speed-up ||-ism

• More resources = 
proportionally less time 
spent.

• Scale-up ||-ism

• More resources = 
proportionally more data 
processed.

# of Nodes

R
e
sp

o
n

se
 T

im
e
 

# of Nodes

T
h
ro

u
g

h
p

u
t



Parallelism Models

CPU

Memory

Disk



Parallelism Models

CPU

Memory

Disk

…

How do the nodes communicate?



Parallelism Models

CPU

Memory

Disk

…

Option 1: “Shared Memory” available to all CPUs

e.g., a Multi-Core/Multi-CPU System



Parallelism Models

CPU

Memory

Disk

…

Used by most AMD servers

Option 2: Non-Uniform Memory Access.



Parallelism Models

CPU

Memory

Disk

…

Each node interacts with a “disk” on the network.

Option 3: “Shared Disk” available to all CPUs



Parallelism Models

CPU

Memory

Disk

…

Examples include MPP, Map/Reduce.  Often used as basis for other abstractions.

Option 4: “Shared Nothing” in which all communication is explicit.



Parallelizing

OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelizing

OLAP - Parallel Queries

OLTP - Parallel Updates



Parallelism & 
Distribution

• Distribute the Data

• Redundancy

• Faster access

• Parallelize the Computation

• Scale up (compute faster)

• Scale out (bigger data)



Operator Parallelism

• General Concept: Break task into individual 
units of computation.

• Challenge: How much data does each unit of 
computation need?

• Challenge: How much data transfer is needed 
to allow the unit of computation?

Same challenges arise in Multicore, CUDA programming.



Parallel Data Flow

AA

No Parallelism

AA



Parallel Data Flow

AA AA11 NN

N-Way Parallelism



Parallel Data Flow

AA AA11 NN

BB BB11 NN

Chaining Parallel Operators

???



Parallel Data Flow

AA AA11 NN

BB BB11 NN

One-to-One Data Flow (“Map”)



Parallel Data Flow

AA AA11 NN

BB BB11 NN

One-to-One Data Flow



Parallel Data Flow

AA AA11 NN

BB BB11 NN

Many-to-Many Data Flow

Extreme 1
All-to-All

All nodes send
all records to

all downstream
nodes

Extreme 2
Partition

Each record
goes to exactly

one downstream
node



Parallel Data Flow

AA AA11 NN

BBBB

Many-to-One Data Flow (“Reduce/Fold”)



Parallel Operators

Select Project Union (bag)

What is a logical “unit of computation”?

Is there a data dependency between units?

(1 tuple)

(no)



Parallel Operators

Select Project Union (bag)

AA AA11 NN

1/N Tuples 1/N Tuples



Parallel Aggregates

Algebraic: Bounded-size intermediate state
(Sum, Count, Avg, Min, Max)

Holistic: Unbounded-size intermediate state
(Median, Mode/Top-K Count, Count-Distinct;

Not Distribution-Friendly)



AA

Fan-In Aggregation

AA11 NN

BBSUMSUM



Fan-In Aggregation

AA11 AA22 AA33 AA44 AA55 AA66 AA77 AA88

SUMSUM 8 Messages



Fan-In Aggregation

AA11 AA22 AA33 AA44 AA55 AA66 AA77 AA88

SUMSUM 4 Messages

SUMSUM
11 SUMSUM

22 SUMSUM
33 SUMSUM

44

2 Messages
(each)



Fan-In Aggregation

AA11 AA22 AA33 AA44 AA55 AA66 AA77 AA88

SUMSUM 2 Messages

SUMSUM
11 SUMSUM

22 SUMSUM
33 SUMSUM

44

2 Messages
(each)

SUM’SUM’
11 SUM’SUM’

22



Fan-In Aggregation

If Each Node Performs K Units of Work…
(K Messages)

How Many Rounds of Computation Are Needed?

LogK(N)



Fan-In Aggregation
Components

Combine(Intermediate1, …, IntermediateN)
= Intermediate

<SUM1, COUNT1>  …  <SUM⊗ ⊗ N, COUNTN> 
 = <SUM1+…+SUMN, COUNT1+…+COUNTN>

Compute(Intermediate) = Aggregate

Compute(<SUM, COUNT>) = SUM / COUNT



Parallel Joins

FOR i IN 1 to N
  FOR j IN 1 to K
    JOIN(Block i of R,
         Block j of S)

One Unit of Computation

Partition
Partition



Parallel Joins

Block 1 of R
⋈

Block 1 of S

N
 P

a
rt

it
io

n
s 

o
f 

R

K Partitions of S
Block 1 of R

⋈
Block K of S

Block N of R
⋈

Block K of S

Block N of R
⋈

Block 1 of S

K

K

N N



1⋈11⋈1

Parallel Joins

2⋈12⋈1 N⋈KN⋈K

R[1] R[2] R[N]… S[1] S[2] S[K]…

UNION



Parallel Joins

How much data needs to be transferred?

How many “units of computation” do we create?



Parallel Joins

What if we partitioned “intelligently”?



Parallel Joins
Hash(R.B)%4

0

1

2

3

√ √ √ √

R ⋈B S:    Which Partitions of S Join w/ Bucket 0 of R?

H
a
sh

(S
.B

)%
4

0 1 2 3

X X X

√

√

√



Parallel Joins
R.B
B<25

25≤B<50

50≤B<75

75≤B

R ⋈R.B < S.B S:    Which Partitions of S Can Produce Output?

S
.B

B<25 25≤B<50 50≤B<75 75≤B

√

√

√

√ √ √

√ √

√

√

X

X X

XXX



Distributing the Work

S

⋈B

R

Let’s start simple… what can we do with no partitions?

R and S may be any RA expression…



Distributing the Work

S

⋈B

R
Node 1

No Parallelism!



Distributing the Work

S

⋈B

R
Node 2Node 1

Node 3

Lots of Data Transfer!

All of R
and

All of S
get sent!



Distributing the Work

S

⋈B

R
Node 2Node 1

All of R
get sent

Better!  We can guess whether R or S is smaller.



Distributing the Work
What can we do if R is partitioned?

R2

⋈B

SR1

⋈B

U



Distributing the Work
There are lots of partitioning strategies, but this one is interesting….

R2

⋈B

SR1

⋈B

U

Node 2 Node 3Node 1



R2

⋈B

S1R1

⋈B

U

Distributing the Work
… it can be used as a model for partitioning S…

Node 2 Node 3Node 1



R2

⋈B

S2R1

⋈B

U

Distributing the Work
… it can be used as a model for partitioning S…

Node 2 Node 3Node 1



R2

⋈B

SR1

⋈B

U

Distributing the Work
…and neatly captures the data transfer issue.

Node 2 Node 3Node 1



Distributing the Work

Si joins with R1,R2,…,RN locally.

So let’s use it:

Goal: Minimize amount of data sent from Rk to Si

Solution 1: Use a partitioning strategy

Solution 2: “Hints” to figure out what Rk should send



Sending Hints

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…



Sending Hints

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Send me Rk



Sending Hints

Node 1 Node 2

Rk Si

Rk ⋈B Si
The naive approach…

Rk



Sending Hints

Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB(       ) 
Si



Sending Hints

Node 1 Node 2

Rk Si

Rk ⋈B Si
The smarter approach…

 πB(       ) 
Si

       ⋈ πB(       ) 
Rk Si



Sending Hints

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<2,X>
<3,Y>
<6,Y>



Sending Hints

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<2,X>
Send me 
rows with 
a ‘B’ of 
2,3, or 6

<3,Y>
<1,A>
<2,B>
<2,C>
<3,D>
<4,E>

<6,Y>

Send me 
rows with 
a ‘B’ of 
2,3, or 6



Sending Hints

Node 1 Node 2

Rk ⋈B Si
The smarter approach…

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>
<3,Y>

<4,E> This is called a semi-join.
<6,Y>

<2,B>
<2,C>
<3,D>

Send me 
rows with 
a ‘B’ of 
2,3, or 6

Send me 
rows with 
a ‘B’ of 
2,3, or 6



Sending Hints

Now Node 1 sends as little data as possible…

… but Node 2 needs to send a lot of data.

Can we do better?



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0
<6,Y>0



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bits

1
0
0

0
1

0
<6,Y>0

Send me 
data with 
a parity 
bit of ‘0’



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 1: Parity Bit

1
0
0

0
1

0

Node 1 sending too much is ok!
(Node 2 still needs to compute ⋈B)

<6,Y>0

Problem: One parity bit is too little

Send me 
data with 
a parity 
bit of ‘0’

<2,B>
<2,C>
<4,E>



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 2: Parity Bits

01
10
10

00
11

10
11<3,Y>

<6,Y>10

Problem: Almost as much data as πB

<2,B>
<2,C>
<3,D>

Send me 
data with 
parity bits 
10 or 11



Sending Hints

Can we summarize the parity bits?



Bloom Filters

Alice
Bob

Carol
Dave



Bloom Filters

Bloom
Filter

Bloom
Filter

Alice
Bob

Carol
Dave



Bloom Filters

Bloom
Filter

Bloom
Filter

Alice
Bob

Carol
Dave

Is Alice part    
of the set?    
Is Alice part    
of the set?    

Is Eve part    
of the set?   
Is Eve part    
of the set?   

Is Fred part   
of the set?   
Is Fred part   
of the set?   

YesYes

NoNo

YesYesBloom Filter Guarantee
Test definitely returns Yes if the element is in the set

Test usually returns No if the element is not in the set



Bloom Filters

A Bloom Filter is a bit vector

M - # of bits in the bit vector

K - # of hash functions

For ONE key (or record):
  For i between 0 and K:
    bitvector[  hashi (key) % M  ] = 1

Each bit vector has ~K bits set



Bloom Filters

00101010

01010110

10000110

01001100

Key 1

Key 2

Key 3

Key 4

Filters are combined 
by Bitwise-OR

e.g. (Key 1 |  Key 2)

= 01111110

How do we test for inclusion?
(Key & Filter) == Key?

(Key 1 & S) = 00101010
(Key 3 & S) = 00000110
(Key 4 & S) = 01001100

X
√

False Positive
√



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

Send me rows 
with a ‘B’ in 
the bloom 
filter
summarizing 
the set 
{2,3,6}



Sending Hints

Node 1 Node 2

Rk ⋈B Si

<1,A>
<2,B>
<2,C>
<3,D>

<2,X>

<4,E>

Strategy 3: Bloom Filters

<3,Y>
<6,Y>

This is called a bloom-join.

Send me rows 
with a ‘B’ in 
the bloom 
filter
summarizing 
the set 
{2,3,6}

<2,B>
<2,C>
<3,D>
<4,E>



Bloom Filters

Probability that 1 bit is set by 1 hash fn

1/m



Bloom Filters

Probability that 1 bit is not set by 1 hash fn

1/m1 -



Bloom Filters

Probability that 1 bit is not set by k hash fns

1/m1 -( )k



Bloom Filters
Probability that 1 bit is not set by k hash fns

for n records

1/m1 -( )kn

So for an arbitrary record, what is the probability
that all of its bits will be set?



Bloom Filters
Probability that 1 bit is set by k hash fns

for n records

1/m1 -( )kn1 -



Bloom Filters
Probability that all k bits are set by k hash fns

for n records

1/m1 -( )kn1 -( )k≈

-kn/m(1- e         )≈ k



Bloom Filters
Minimal P[collision]

m/n = 10

m/n = 5

m/n = 20 m/n = 30

Minimal P[collision] is at k ≈ c ∙ m/n



Bloom Filters

k ≈ c ∙ m/n

≈ cn

m is linearly related to n (for a fixed k)

k
m



Bloom Join
• Node 2 Computes Bloom Filter for Local 

Records

• Node 2 Sends Bloom Filter to Node 1

• Node 1 Matches Local Records Against Bloom 
Filter

• Node 1 Sends Matched Records to Node 2

• Superset of “useful” records

• Node 2 Performs Join Locally


	Slide 1
	Why Scale?
	Why Scale Up?
	Why Scale Up?
	Data Parallelism
	Operator Parallelism
	Types of Parallelism
	DBMSes: The First || Success Story
	Types of Speedup
	Parallelism Models
	Parallelism Models
	Parallelism Models
	Parallelism Models
	Parallelism Models
	Parallelism Models
	Parallelizing
	Parallelizing
	Parallelism & Distribution
	Operator Parallelism
	Parallel Data Flow
	Parallel Data Flow
	Parallel Data Flow
	Parallel Data Flow
	Parallel Data Flow
	Parallel Data Flow
	Parallel Data Flow
	Parallel Operators
	Parallel Operators
	Parallel Aggregates
	Fan-In Aggregation_clipboard0
	Fan-In Aggregation_clipboard1
	Fan-In Aggregation_clipboard2
	Fan-In Aggregation_clipboard3
	Fan-In Aggregation
	Fan-In Aggregation Components
	Parallel Joins
	Parallel Joins
	Parallel Joins
	Parallel Joins
	Parallel Joins
	Parallel Joins
	Parallel Joins
	Distributing the Work_clipboard0
	Distributing the Work_clipboard1
	Distributing the Work_clipboard2
	Distributing the Work_clipboard3
	Distributing the Work_clipboard4
	Distributing the Work_clipboard5
	Distributing the Work_clipboard6
	Distributing the Work_clipboard7
	Distributing the Work_clipboard8
	Distributing the Work
	Sending Hints_clipboard9
	Sending Hints_clipboard10
	Sending Hints_clipboard11
	Sending Hints_clipboard12
	Sending Hints_clipboard13
	Sending Hints_clipboard14
	Sending Hints_clipboard15
	Sending Hints_clipboard16
	Sending Hints_clipboard17
	Sending Hints_clipboard18
	Sending Hints_clipboard19
	Sending Hints_clipboard20
	Sending Hints_clipboard22
	Sending Hints_clipboard23
	Bloom Filters_clipboard24
	Bloom Filters_clipboard25
	Bloom Filters_clipboard26
	Bloom Filters_clipboard27
	Bloom Filters
	Sending Hints_clipboard28
	Sending Hints_clipboard29
	Sending Hints
	Bloom Filters_clipboard0
	Bloom Filters_clipboard1
	Bloom Filters_clipboard2
	Bloom Filters_clipboard3
	Bloom Filters_clipboard4
	Bloom Filters_clipboard5
	Bloom Filters_clipboard6
	Slide 82
	Bloom Join

