Coin Flipping

> (Statistics|Probability|Machine Learning|Data Mining|Data and Knowledge Discovery|Pattern Recognition|Data Science|Data Analysis)

1 - About

discrete random_variable

A Bernoulli process is a repeated coin flipping, possibly with an unfair coin (but with consistent unfairness).

Advertising

3 - Random Variable

<MATH> Y(\omega) = \begin{cases} 1, & \text{if } \omega = \text{heads}, \\[6pt] 0, & \text{if } \omega = \text{tails}. \end{cases} </MATH>

4 - Sample space

<MATH> \Omega = \{ \text{heads} , \text{tails} \} </MATH>

5 - PMF

If the coin is a fair coin, Y has a probability mass function given by:

<MATH> f_Y(y) = \begin{cases} \frac 12,& \text{if }y=1,\\[6pt] \frac 12,& \text{if }y=0, \end{cases} </MATH>

6 - Documentation / Reference